Mobile Menu Open Mobile Menu Close

Search by:





Wing areas and wing loadings of New Zealand land birds

Notornis, 70 (2), 74-82

B.J. Gill (2023)

Article Type: Paper

Abstract: Wing areas and wing loadings of New Zealand land birds are poorly documented in the literature. I therefore report measured wing areas of 84 individual birds belonging to 27 species, with calculated wing loadings. Plotting the data graphically allows some ecological inferences. Heavier New Zealand land birds achieve greater wing loadings than lighter species, as is the case for birds generally. For flying birds, small passerines had the lowest wing loadings (0.12 g/cm2 for the New Zealand fantail) and heavier non-passerines the highest wing loadings (0.88 g/cm2 for the pukeko). I expected non-migratory, forest-dwelling, endemic song-birds with weak dispersal abilities to have very high wing loadings but this was not the case. Instead, native and introduced song-birds of similar size tended to have fairly similar wing loadings. Wing loading was slightly elevated in the North Island saddleback and North Island kokako but the whitehead was normal. The tui, a vigorous flier, had a much lower wing loading than expected for its mass. Data for three flightless species suggest that while high wing loading is an important correlate of flightlessness, it is not the only factor.






Hosts of the long-tailed cuckoo (Eudynamys taitensis) and museum specimens of the cuckoo’s egg

Notornis, 69 (2), 89-98

B.J. Gill (2022)

Article Type: Paper

The description of the long-tailed cuckoo’s (Eudynamys taitensis) egg was uncertain until the 1930s. Edgar Stead published evidence in 1936 that it was white with darker (red-brown or purplish) speckles, and therefore mimetic in colour and pattern (as well as size) to the eggs of many small song-birds in New Zealand. In reviewing eggs in museum collections, I find that only one (Auckland Museum LB8968) is certainly long-tailed cuckoo, and only eight other eggs are “probable” (with another eight “possible”). Average dimensions of the nine most likely eggs are 24.1 x 17.4 mm. Field observations of long-tailed cuckoo nestlings, or dependent fledglings receiving food, mostly involve whiteheads, yellowheads, and brown creepers (all in the genus Mohoua, Mohouidae), the principal biological hosts. There are single credible reports of a long-tailed cuckoo nestling being raised in a nest of South Island robin (Petroica; 1880s), silvereye (Zosterops; 1946, plus a vague record from the 1980s), and fantail (Rhipidura; 1963). The scarcity of evidence for non-mohouid hosts, despite the great increase in ornithological field-work since 1963, suggests that use of secondary hosts is extremely rare. Seven other New Zealand song-birds have been cited as hosts of the long-tailed cuckoo, but all reports lack evidence of a cuckoo nestling being raised by the species concerned.


Distribution of great spotted kiwi (Apteryx maxima), 2012-2021

Notornis, 69 (1), 1-18

R. Toy; S. Toy; D. MacKenzie; K. Simister; S. Yong (2022)

Article Type: Paper

Conservation management requires knowledge of the distribution of species and how this changes over time. Great spotted kiwi (roroa, Apteryx maxima) is classified as globally threatened, ‘Vulnerable’ by the IUCN. It occurs only in the northwest of the South Island of New Zealand, is nocturnal and occurs at low density in mainly remote, mountainous terrain. To determine its distribution, we deployed acoustic recorders at 1,215 locations across 1,400,000 ha between 2012 and 2021. We analysed 3,356 nights of recordings to determine presence and call rates at each location. Roroa were distributed across 848,000 ha, but we identified a core area in northwest Nelson representing just 12% of the distribution (101,000 ha). Within the core, call rates exceeded 3 calls/h at many locations. Call rates provide only a relative indication of abundance but, outside the core, call rates fewer than 0.3 calls/h are common, suggesting that roroa are relatively sparse over much of their distribution. We used a static occupancy model with climatic, topographic and land-cover class variables to better understand the distribution. Eighty percent of recorder-nights had a detection probability exceeding 50%. At this probability, 73% of 5 x 5 km cells surveyed were sampled sufficiently to exceed 90% probability of detection if roroa were present. Annual rainfall and land-cover class appear most important for modelling occupancy. However, comparison of probability of occupancy and actual distribution suggests that variables not included in the modelling, which might include predation, also affect the distribution.


Short term effects of an aerial 1080 operation on mātātā (South Island fernbird, Poodytes punctatus punctatus) in a South Island wetland

Notornis, 69 (4), 203-210

C. Kilner; J. Kemp; G. Elliott (2022)

Article Type: Paper

Abstract: New Zealand conservation managers use aerial 1080 (sodium fluoroacetate) to control invasive mammalian predators, often with the aim of protecting populations of threatened endemic birds. Matātā (South Island fernbird, Poodytes punctatus punctatus) are endemic to New Zealand wetlands and are vulnerable to mammalian depredation. Mātātā populations might benefit from aerial 1080 predator control, but they also can suffer non-target poisoning losses. This study measured the short-term effects of an aerial 1080 operation on mātātā adult survival (i.e. non target mortality) and nest survival (over one breeding season) on the West Coast of South Island. The study utilised two sites, with an October (mid-breeding-season) aerial 1080 operation at one of the sites. We found no evidence of a negative short-term effect of aerial 1080 – none of fourteen colour-banded adult mātātā exposed to 1080 baits died of 1080 poisoning. Conversely, we found evidence of a short-term positive effect – aerial 1080 improved mātātā nest survival over one breeding season. The presence of a positive effect, in the absence of a negative effect, suggests that the net effect of the 1080 operation for the mātātā population was positive, at the end of the breeding season.


The detection, breeding behaviour, and use of mangroves (Avicennia marina australasica) by banded rails (Gallirallus philippensis assimilis)

Notornis, 69 (2), 99-111

A.J. Beauchamp (2022)

Article Type: Paper

This study assessed how tall mangroves were used by a pair of banded rails (Gallirallus philippensis assimilis) with dependent young during three breeding seasons and the intervening periods. Banded rails were territorial and resident all year, raised their young under the mangrove canopy predominantly in dense pneumatophores, and sub-canopy seedlings and saplings. Foraging rails did not follow the tide as it covered and uncovered the flats. Young less than 20 days old were left in cover and delivered food. Young then followed parents as they strolled throughout the site, swam, flew short distances, and climbed mangroves. Rails bathed in and drank saline water and ate worms and crabs. The dependence period of broods was 45–49 days, and in one season, a young bird stayed within the natal site until it was 59 days old.

When the lonely goose? Implications of a revised history of the lake and its surrounding vegetation for a radiocarbon age for the only South Island goose (Cnemiornis calcitrans) from the Pyramid Valley lake bed deposit, New Zealand

Notornis, 69 (1), 19-36

A.G. Johnston; B.C. Duffy; R.N. Holdaway (2022)

Article Type: Paper

A high resolution chronology of deep water charophyte algal remains in the Pyramid Valley lake deposit, North Canterbury, South Island, New Zealand, records the presence and drainage of a previously unsuspected much larger (c. 50 ha) lake. The larger lake occupied the surrounding basin and the present lake (1 ha) was a semi-isolated embayment at its south-western margin. Fluctuating lake levels and its final drainage drove changes in the vegetation and hence in the habitats available for the avifauna recorded in the rich fossil record. A high precision radiocarbon age on the only South Island goose (Cnemiornis calcitrans) in the fauna coincided with the presence of lowland forest and not with the brief period when sedges and grassland colonised the newly exposed former lake bed. This suggests that the South Island goose was able to survive in different habitats through successive glacial-interglacial vegetation cycles. Information from other disciplines can be essential to interpreting both a fossil site and the circumstances surrounding the presence of a particular species in it.



A New Zealand island in change: 38 years of landbird populations affected by habitat restoration and invasive mammalian predator control

Notornis, 69 (4), 211-228

C.J. Ralph; C.P. Ralph; P. Martins; P.L. Ralph (2022)

Article Type: Paper

Abstract: Bird abundances on a small island (150 ha) near the mainland of northern North Island New Zealand were studied using a standardised, longitudinal survey through 38 years (1988–2020), a period during which habitat restoration, reintroductions of five native bird species, and control of rats (Rattus spp.) and stoats (Mustela ermina) occurred. We estimated time-series abundances of 33 bird species and found substantial population shifts shared by many taxa. The unique data set from this restoration project showed that: (1) more species and more individual birds were present at the end of the study than at the beginning; (2) rat control made an immediate and lasting difference, increasing population growth of the typical species 6% per year; (3) boosting ecological succession by habitat conversion and habitat enrichment resulted in a long term population growth of many native bird species; (4) shifts in species composition are still ongoing 20 years after predator control, with both gradual, long-term increases, and declines. In particular, two endemic species, and pōpokotea (whitehead, Mohoua albicilla) proved robust competitors in a predator- free environment, increasing in abundance, while most non-native and many native species declined. These gradual, longer-term shifts became clear during “maturation”, a period beginning about 13 years after predator control started.