We report on the discovery, care, release, and post-release monitoring of the 2nd vagrant emperor penguin (Aptenodytes forsteri) recorded from New Zealand. An immature male emperor penguin came ashore at Peka Peka Beach (40° 50’ S) 56 km north-east of Wellington on 20 Jun 2011. Its condition deteriorated over the following 4 days, and it was taken into care at Wellington Zoo on 24 Jun. Following 72 days of rehabilitation, the bird was released at sea at 51° 42’ S, 78 km north of subantarctic Campbell I, on 4 Sep 2011. He was tracked, via satellite transmitter, moving south-east for 113 km until 9 Sep, after which no further signals were received. The arrival, care and release of this penguin attracted unprecedented levels of public and media interest for a vagrant bird to New Zealand.
To date there has been no published information describing the relative abundance, behaviour or distribution of the New Zealand king shag (Leucocarbo carunculatus) within mussel farm areas, despite the sensitivity of the species to human disturbance and the potential overlap of its range with proposed development of marine aquaculture. Four survey methods were employed as part of a multi-species research programme to develop methods for surveying marine mammals and seabird populations in aquaculture management areas. Two of the techniques, involving continuous time- lapse photography of mussel farms and boat-based surveys through coastal farms were developed for this study. Time- lapse cameras showed that mussel farms buoys were used by king shags as temporary resting sites only. King shags were recorded on 36% of the farms (n = 44) from 13 surveys within inner Admiralty Bay. The low number of sightings within mussel farms suggests that farms are not important foraging or resting areas for king shags, at least in Admiralty Bay. The foraging range and density of king shags was not known before farms were developed, so no direct comparison or impact assessment can be made. Boat-based surveys were used to estimate the density of foraging shags, which showed that daily locations of foraging birds at sea can vary considerably on consecutive days and over the season. Previous environmental surveys to assess impacts of mussel farms on foraging areas are therefore unlikely to adequately represent the entire foraging range or most important feeding areas. The number of breeding pairs, chicks and nests was also found to vary considerably at colonies, dependent on when counts were undertaken during their protracted breeding season. Open water mid-bay aquaculture (shellfish and finfish) potentially poses a greater threat to king shags than ‘coastal ribbon development’, in terms of loss of open water habitat from farm structures, and loss of foraging habitat through modification to the water column (e.g., turbidity) and seabed. Given the lack of knowledge about the king shag population dynamics, diet and prey availability, there is an urgent requirement for more research to fill these gaps and also understand how we can conserve important shag feeding areas and associated marine environment through sustainable management of aquaculture.
Sexual differences in vocalisations of the Vanuatu petrel (Pterodroma occulta) are described. Qualitative differences in burrow calls could be used to sex adults with 63-100% accuracy in listening experiments. Males sounded “clear” and females sounded “hoarse”. Higher accuracy is possible with the aid of spectrograms. Playback experiments demonstrated a male-bias in responses of incubating Vanuatu petrels to “war-whooping” and flight calls. Acoustic methods have practical and ethical advantages over handling breeding petrels and further studies of the vocal behaviour of gadfly-petrels are encouraged.